Molecular Basis for Lytic Bacteriophage Resistance in Enterococci
نویسندگان
چکیده
UNLABELLED The human intestine harbors diverse communities of bacteria and bacteriophages. Given the specificity of phages for their bacterial hosts, there is growing interest in using phage therapies to combat the rising incidence of multidrug-resistant bacterial infections. A significant barrier to such therapies is the rapid development of phage-resistant bacteria, highlighting the need to understand how bacteria acquire phage resistance in vivo Here we identify novel lytic phages in municipal raw sewage that kill Enterococcus faecalis, a Gram-positive opportunistic pathogen that resides in the human intestine. We show that phage infection of E. faecalis requires a predicted integral membrane protein that we have named PIPEF (for phage infection protein from E. faecalis). We find that PIPEF is conserved in E. faecalis and harbors a 160-amino-acid hypervariable region that determines phage tropism for distinct enterococcal strains. Finally, we use a gnotobiotic mouse model of in vivo phage predation to show that the sewage phages temporarily reduce E. faecalis colonization of the intestine but that E. faecalis acquires phage resistance through mutations in PIPEF Our findings define the molecular basis for an evolutionary arms race between E. faecalis and the lytic phages that prey on them. They also suggest approaches for engineering E. faecalis phages that have altered host specificity and that can subvert phage resistance in the host bacteria. IMPORTANCE Bacteriophage therapy has received renewed attention as a potential solution to the rise in antibiotic-resistant bacterial infections. However, bacteria can acquire phage resistance, posing a major barrier to phage therapy. To overcome this problem, it is necessary to understand phage resistance mechanisms in bacteria. We have unraveled one such resistance mechanism in Enterococcus faecalis, a Gram-positive natural resident of the human intestine that has acquired antibiotic resistance and can cause opportunistic infections. We have identified a cell wall protein hypervariable region that specifies phage tropism in E. faecalis Using a gnotobiotic mouse model of in vivo phage predation, we show that E. faecalis acquires phage resistance through mutations in this cell wall protein. Our findings define the molecular basis for lytic phage resistance in E. faecalis They also suggest opportunities for engineering E. faecalis phages that circumvent the problem of bacterial phage resistance.
منابع مشابه
Investigating the Effect of Lytic Bacteriophages on Pseudomonas Aeruginosa Isolates with Multidrug Resistance (MDR) in Tehran in 2021
Introduction: Pseudomonas aeruginosa bacterium has a high resistance to most anti-Pseudomonas drugs, which has caused concern all over the world. Therefore, the effect of lytic bacteriophages on Pseudomonas aeruginosa isolates with multi-drug resistance is investigated in this research. Methods and Materials: Different strains of Pseudomonas aeruginosa bacterium were identified and isolated fr...
متن کاملIsolation of lytic bacteriophages against pathogenic Escherichia coli strains in poultry in the northwest of Iran
In this study, 90 internal organ samples of poultry with symptoms of colibacillosis were obtained from Maragheh poultry farms in East Azerbaijan, Iran. In total, 70 bacterial isolates were confirmed as Escherichia coli (E. coli) strains using standard biochemical tests, and antibiotic sensitivity was determined by the disk diffusion method. Antibiotics used in this study included ampicillin, pe...
متن کاملISOLATION OF LYTIC BACTERIOPHAGE AB72P AGAINST MULTI-DRUG RESISTANT ACINETOBACTER BAUMANNII ISOLATES OBTAINED FROM BURN INFECTION
Background & Aims: Acinetobacter baumannii is a gram-negative pathogen that causes a wide range of hospital-acquired infections. Due to its intrinsic traits and its remarkable abilities to quickly acquire resistance genes, it has become resistant to most antimicrobial agents and a major problem for hospitals. In recent years, application of lytic bacteriophages has been considered to eradicate ...
متن کاملLytic Activity of Isolated Phage from Milk Against Extended-Spectrum Beta-Lactamase Escherichia coli
Background and purpose: Escherichia coli (E.coli) is the most common cause of urinary tract infection. The treatment strategy has been hampered by the emergence of broad-spectrum beta-lactamase-producing E.coli and its resistance to most antibiotics. Bacteriophages are suggested as an alternative treatment option. This study aimed at evaluating the lytic activity of isolated phage from unpaste...
متن کاملMolecular Identification of Pathogenic Enterococci and Evaluation of Multi-drug Resistance in Enterococcus Species Isolated From Clinical samples of Some Hospitals in Tehran, Iran
Background: Multidrug-resistant (MDR) enterococci cause many problems for physicians and infection control specialists in the recent years. Hence, by the identification of antibiotic resistance patterns of enterococci in different geographical regions an appropriate strategy can be developed to prevent bacterial antibiotic resistance and provide effective treatment. The current study aimed at i...
متن کامل